MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance: 4stufen

Formats ams gms mod nl osil
Primal Bounds
116329.67060000 p1 ( gdx sol )
(infeas: 2e-12)
Dual Bounds
116329.67060000 (ANTIGONE)
109309.63000000 (BARON)
106133.81700000 (COUENNE)
16581.78314000 (LINDO)
92404.90300000 (SCIP)
Source GAMS Client
Application four membrane pipe modules in feed-and-bleed coupling
Added to library 01 May 2001
Problem type MBNLP
#Variables 149
#Binary Variables 48
#Integer Variables 0
#Nonlinear Variables 50
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 6
#Nonlinear Nonzeros in Objective 0
#Constraints 98
#Linear Constraints 64
#Quadratic Constraints 13
#Polynomial Constraints 8
#Signomial Constraints 8
#General Nonlinear Constraints 5
Operands in Gen. Nonlin. Functions mul div log
Constraints curvature indefinite
#Nonzeros in Jacobian 312
#Nonlinear Nonzeros in Jacobian 87
#Nonzeros in (Upper-Left) Hessian of Lagrangian 135
#Nonzeros in Diagonal of Hessian of Lagrangian 21
#Blocks in Hessian of Lagrangian 13
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 26
Average blocksize in Hessian of Lagrangian 3.846154
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Infeasibility of initial point 8.067e+04
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         99       95        4        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        150      102       48        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        319      232       87        0
*
*  Solve m using MINLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
          ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
          ,x88,x89,x90,x91,x92,x93,x94,x95,b96,b97,b98,b99,b100,b101,b102,b103
          ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116
          ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129
          ,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142
          ,b143,objvar,x145,x146,x147,x148,x149,x150;

Positive Variables  x2,x8,x9,x10,x11,x20,x21,x22,x23,x24,x25,x26,x27,x76,x77
          ,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87,x88,x89,x90,x91,x92,x93,x94
          ,x95,x145,x146,x147,x148,x149,x150;

Binary Variables  b96,b97,b98,b99,b100,b101,b102,b103,b104,b105,b106,b107,b108
          ,b109,b110,b111,b112,b113,b114,b115,b116,b117,b118,b119,b120,b121
          ,b122,b123,b124,b125,b126,b127,b128,b129,b130,b131,b132,b133,b134
          ,b135,b136,b137,b138,b139,b140,b141,b142,b143;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99;


e1..    objvar - x145 - x146 - x147 - x148 - x149 - x150 =E= 3271.22725820856;

e2..    x8 =E= 1800;

e3..    x12 =E= 5;

e4..    x2 - x24 - x25 - x26 - x27 =E= 0;

e5.. -(x28*x24 + x29*x25 + x30*x26 + x31*x27)/x2 + x3 =E= 0;

e6..    x1 - x19 =E= 0;

e7..    x23 =E= 100;

e8..    x9 - x16 =E= 0;

e9..    x13 - x20 =E= 0;

e10..    x5 - x32 - x33 - x34 - x35 =E= 0;

e11..    x6 - x36 - x37 - x38 - x39 =E= 0;

e12..    x7 - x92 - x93 - x94 - x95 =E= 0;

e13..    x4 - x72 - x73 - x74 - x75 =E= 0;

e14..    x10 - x17 =E= 0;

e15..    x14 - x21 =E= 0;

e16..    x11 - x18 =E= 0;

e17..    x15 - x22 =E= 0;

e18.. 2.77777777777778e-7*x40/log((x44 - x28)/(x20 - x28)) - x56 =E= 0;

e19.. 2.77777777777778e-7*x41/log((x45 - x29)/(x21 - x29)) - x57 =E= 0;

e20.. 2.77777777777778e-7*x42/log((x46 - x30)/(x22 - x30)) - x58 =E= 0;

e21.. 2.77777777777778e-7*x43/log((x47 - x31)/(x23 - x31)) - x59 =E= 0;

e22..    50*x28 - x44 =E= 0;

e23..    50*x29 - x45 =E= 0;

e24..    50*x30 - x46 =E= 0;

e25..    50*x31 - x47 =E= 0;

e26..    x40 - 65.38084341288*x48 + 65.38084341288*x60 =E= 0;

e27..    x41 - 65.38084341288*x49 + 65.38084341288*x61 =E= 0;

e28..    x42 - 65.38084341288*x50 + 65.38084341288*x62 =E= 0;

e29..    x43 - 65.38084341288*x51 + 65.38084341288*x63 =E= 0;

e30..  - x60 + x64 - x68 =E= 0;

e31..  - x61 + x65 - x69 =E= 0;

e32..  - x62 + x66 - x70 =E= 0;

e33..  - x63 + x67 - x71 =E= 0;

e34.. -1e-5*(12.09*sqr(x44) + 3.66*x44 - 0.08*x44**3 + 0.0002592*x44**4) + x64
       =E= 0;

e35.. -1e-5*(12.09*sqr(x45) + 3.66*x45 - 0.08*x45**3 + 0.0002592*x45**4) + x65
       =E= 0;

e36.. -1e-5*(12.09*sqr(x46) + 3.66*x46 - 0.08*x46**3 + 0.0002592*x46**4) + x66
       =E= 0;

e37.. -1e-5*(12.09*sqr(x47) + 3.66*x47 - 0.08*x47**3 + 0.0002592*x47**4) + x67
       =E= 0;

e38.. -1e-5*(12.09*sqr(x28) + 3.66*x28 - 0.08*x28**3 + 0.0002592*x28**4) + x68
       =E= 0;

e39.. -1e-5*(12.09*sqr(x29) + 3.66*x29 - 0.08*x29**3 + 0.0002592*x29**4) + x69
       =E= 0;

e40.. -1e-5*(12.09*sqr(x30) + 3.66*x30 - 0.08*x30**3 + 0.0002592*x30**4) + x70
       =E= 0;

e41.. -1e-5*(12.09*sqr(x31) + 3.66*x31 - 0.08*x31**3 + 0.0002592*x31**4) + x71
       =E= 0;

e42.. -1.13572384718704e-8*(7936.50793650794*x52)**0.75 + x56 =E= 0;

e43.. -1.13572384718704e-8*(7936.50793650794*x53)**0.75 + x57 =E= 0;

e44.. -1.13572384718704e-8*(7936.50793650794*x54)**0.75 + x58 =E= 0;

e45.. -1.13572384718704e-8*(7936.50793650794*x55)**0.75 + x59 =E= 0;

e46..  - x8 + x16 + x24 =E= 0;

e47..  - x9 + x17 + x25 =E= 0;

e48..  - x10 + x18 + x26 =E= 0;

e49..  - x11 + x19 + x27 =E= 0;

e50.. x12*x8 - (x20*x16 + x28*x24) =E= 0;

e51.. x13*x9 - (x21*x17 + x29*x25) =E= 0;

e52.. x14*x10 - (x22*x18 + x30*x26) =E= 0;

e53.. x15*x11 - (x23*x19 + x31*x27) =E= 0;

e54.. -2.77777777777778e-5*x48*x8 + x84 =E= 0;

e55.. -2.77777777777778e-5*x49*x9 + x85 =E= 0;

e56.. -2.77777777777778e-5*x50*x10 + x86 =E= 0;

e57.. -2.77777777777778e-5*x51*x11 + x87 =E= 0;

e58.. -x24/x40 + x72 =E= 0;

e59.. -x25/x41 + x73 =E= 0;

e60.. -x26/x42 + x74 =E= 0;

e61.. -x27/x43 + x75 =E= 0;

e62..    x32 - 20*x72 =E= 0;

e63..    x33 - 20*x73 =E= 0;

e64..    x34 - 20*x74 =E= 0;

e65..    x35 - 20*x75 =E= 0;

e66..  - 373.932*x52 + x76 =E= 0;

e67..  - 373.932*x53 + x77 =E= 0;

e68..  - 373.932*x54 + x78 =E= 0;

e69..  - 373.932*x55 + x79 =E= 0;

e70.. -x32*x76 + x80 =E= 0;

e71.. -x33*x77 + x81 =E= 0;

e72.. -x34*x78 + x82 =E= 0;

e73.. -x35*x79 + x83 =E= 0;

e74..  - 5.55555555555556E-6*x80 + x88 =E= 0;

e75..  - 5.55555555555556E-6*x81 + x89 =E= 0;

e76..  - 5.55555555555556E-6*x82 + x90 =E= 0;

e77..  - 5.55555555555556E-6*x83 + x91 =E= 0;

e78..  - 1.58730158730159*x84 - 1.58730158730159*x88 + x92 =E= 0;

e79..  - 1.58730158730159*x85 - 1.58730158730159*x89 + x93 =E= 0;

e80..  - 1.58730158730159*x86 - 1.58730158730159*x90 + x94 =E= 0;

e81..  - 1.58730158730159*x87 - 1.58730158730159*x91 + x95 =E= 0;

e82..    x36 - 0.909090909090909*x88 =G= 0;

e83..    x37 - 0.909090909090909*x89 =G= 0;

e84..    x38 - 0.909090909090909*x90 =G= 0;

e85..    x39 - 0.909090909090909*x91 =G= 0;

e86..    x32 - b96 - 2*b100 - 4*b104 - 8*b108 - 16*b112 - 32*b116 - 64*b120
       - 128*b124 =E= 0;

e87..    x33 - b97 - 2*b101 - 4*b105 - 8*b109 - 16*b113 - 32*b117 - 64*b121
       - 128*b125 =E= 0;

e88..    x34 - b98 - 2*b102 - 4*b106 - 8*b110 - 16*b114 - 32*b118 - 64*b122
       - 128*b126 =E= 0;

e89..    x35 - b99 - 2*b103 - 4*b107 - 8*b111 - 16*b115 - 32*b119 - 64*b123
       - 128*b127 =E= 0;

e90..    x36 - b128 - 2*b132 - 4*b136 - 8*b140 =E= 0;

e91..    x37 - b129 - 2*b133 - 4*b137 - 8*b141 =E= 0;

e92..    x38 - b130 - 2*b134 - 4*b138 - 8*b142 =E= 0;

e93..    x39 - b131 - 2*b135 - 4*b139 - 8*b143 =E= 0;

e94..    x145 =E= 5047.03634123606;

e95..  - 292.07386234005*x6 + x146 =E= 0;

e96..  - 2103.94993266178*x7 + x149 =E= 0;

e97..  - 45.7380420143865*x2 + x147 =E= 0;

e98.. -4.57380420143865*x2*x3 + x148 =E= 0;

e99..  - 764.973851088085*x4 + x150 =E= 0;

* set non-default bounds
x1.lo = 10;
x3.lo = 1;
x4.lo = 1;
x5.lo = 2;
x6.lo = 1;
x7.lo = 0.1675;
x12.lo = 5;
x13.lo = 5;
x14.lo = 5;
x15.lo = 5;
x16.lo = 1;
x17.lo = 1;
x18.lo = 1;
x19.lo = 1;
x28.lo = 0.001;
x29.lo = 0.001;
x30.lo = 0.001;
x31.lo = 0.001;
x32.lo = 1;
x33.lo = 1;
x34.lo = 1;
x35.lo = 1;
x36.lo = 1;
x37.lo = 1;
x38.lo = 1;
x39.lo = 1;
x40.lo = 1;
x41.lo = 1;
x42.lo = 1;
x43.lo = 1;
x44.lo = 0.01;
x45.lo = 0.01;
x46.lo = 0.01;
x47.lo = 0.01;
x48.lo = 2; x48.up = 6;
x49.lo = 2; x49.up = 6;
x50.lo = 2; x50.up = 6;
x51.lo = 2; x51.up = 6;
x52.lo = 1.26; x52.up = 6;
x53.lo = 1.26; x53.up = 6;
x54.lo = 1.26; x54.up = 6;
x55.lo = 1.26; x55.up = 6;
x56.lo = 1.13E-5;
x57.lo = 1.13E-5;
x58.lo = 1.13E-5;
x59.lo = 1.13E-5;
x60.lo = 2.9E-7;
x61.lo = 2.9E-7;
x62.lo = 2.9E-7;
x63.lo = 2.9E-7;
x64.lo = 3E-7;
x65.lo = 3E-7;
x66.lo = 3E-7;
x67.lo = 3E-7;
x68.lo = 3E-7;
x69.lo = 3E-7;
x70.lo = 3E-7;
x71.lo = 3E-7;
x72.lo = 0.05;
x73.lo = 0.05;
x74.lo = 0.05;
x75.lo = 0.05;

* set non-default levels
x1.l = 36.344;
x2.l = 1763.656;
x3.l = 3.042;
x4.l = 10.808;
x5.l = 216.161;
x6.l = 1.225;
x7.l = 2.542;
x8.l = 1800;
x9.l = 241.731;
x10.l = 158.011;
x11.l = 88.847;
x13.l = 18.176;
x14.l = 26.048;
x15.l = 43.416;
x16.l = 241.731;
x17.l = 158.011;
x18.l = 88.847;
x19.l = 36.344;
x20.l = 18.176;
x21.l = 26.048;
x22.l = 43.416;
x23.l = 100;
x24.l = 1558.269;
x25.l = 83.72;
x26.l = 69.163;
x27.l = 52.503;
x28.l = 2.956;
x29.l = 3.317;
x30.l = 3.737;
x31.l = 4.248;
x32.l = 176.503;
x33.l = 10.861;
x34.l = 11.542;
x35.l = 17.256;
x40.l = 176.572;
x41.l = 154.169;
x42.l = 119.85;
x43.l = 60.852;
x44.l = 147.804;
x45.l = 165.863;
x46.l = 186.858;
x47.l = 212.397;
x48.l = 4;
x49.l = 4;
x50.l = 4;
x51.l = 4;
x52.l = 3;
x53.l = 3;
x54.l = 3;
x55.l = 3;
x56.l = 2.1769E-5;
x57.l = 2.1769E-5;
x58.l = 2.1769E-5;
x59.l = 2.1769E-5;
x60.l = 1.299;
x61.l = 1.642;
x62.l = 2.167;
x63.l = 3.069;
x64.l = 1.3;
x65.l = 1.643;
x66.l = 2.169;
x67.l = 3.072;
x68.l = 0.001;
x69.l = 0.001;
x70.l = 0.002;
x71.l = 0.002;
x72.l = 8.825;
x73.l = 0.543;
x74.l = 0.577;
x75.l = 0.863;
x76.l = 1121.796;
x77.l = 1121.796;
x78.l = 1121.796;
x79.l = 1121.796;
x80.l = 198000;
x81.l = 12183.696;
x82.l = 12947.373;
x83.l = 19357.594;
x84.l = 0.2;
x85.l = 0.027;
x86.l = 0.018;
x87.l = 0.01;
x88.l = 1.1;
x89.l = 0.068;
x90.l = 0.072;
x91.l = 0.108;
x92.l = 2.063;
x93.l = 0.15;
x94.l = 0.142;
x95.l = 0.186;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2018-08-07 Git hash: fccdb193
Imprint / Privacy Policy