MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ann_fermentation_tanh
Fermentation process of glucose to gluconic acid learned and optimized by an embedded artificial neural network.
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -99.93663847 (LINDO) |
| Referencesⓘ | Schweidtmann, Artur M. and Mitsos, Alexander, Deterministic Global Optimization with Artificial Neural Networks Embedded, Journal of Optimization Theory and Applications, 180:3, 2019, 925-948. |
| Applicationⓘ | Neural Networks |
| Added to libraryⓘ | 29 Nov 2021 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 12 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 4 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | signomial |
| Objective curvatureⓘ | indefinite |
| #Nonzeros in Objectiveⓘ | 2 |
| #Nonlinear Nonzeros in Objectiveⓘ | 2 |
| #Constraintsⓘ | 9 |
| #Linear Constraintsⓘ | 7 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 2 |
| Operands in Gen. Nonlin. Functionsⓘ | tanh |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 23 |
| #Nonlinear Nonzeros in Jacobianⓘ | 2 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 5 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 3 |
| #Blocks in Hessian of Lagrangianⓘ | 3 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.333333 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 2.5000e-02 |
| Maximal coefficientⓘ | 1.4792e+02 |
| Infeasibility of initial pointⓘ | 101.2 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 10 10 0 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 13 13 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL
* 26 22 4
* Solve m using NLP minimizing objvar;
Variables
objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13;
Equations
e1,e2,e3,e4,e5,e6,e7,e8,e9,e10;
e1.. 91.91176470588235 * x10 / x2 + objvar =E= 0;
e2.. -tanh(x12) + x8 =E= 0;
e3.. -tanh(x13) + x9 =E= 0;
e4.. -0.0949474332688833 * x8 + 0.968637250639063 * x9 + x11 =E=
0.002499597315649;
e5.. x10 - 86.324 * x11 =E= 92.74;
e6.. -0.025 * x2 + x5 =E= -3.5;
e7.. -x3 + x6 =E= -2;
e8.. -0.04 * x4 + x7 =E= -1.4;
e9.. -24.4380718077469 * x5 - 22.0304402344789 * x6 + 147.921509281049 * x7 +
x12 =E= 101.235018055261;
e10.. 1.48567642304727 * x5 - 0.0532843142008436 * x6 + 0.910590580134437 * x7
+ x13 =E= 0.18771256886977;
* set non-default bounds
x2.lo = 100; x2.up = 180;
x3.lo = 1; x3.up = 3;
x4.lo = 10; x4.up = 60;
Model m / all /;
m.limrow = 0;
m.tolproj=0.0;
m.limcol = 0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

