MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance: cesam2log

Illustrates a cross entropy technique for estimating the cells of a consistent SAM assuming that the initial data are inconsistent and measured with error.
This is a variant of cesam2cent where the centropy() function is written explicitly via basis arithmetic functions (log, ...).
Formats ams gms mod nl osil
Primal Bounds
0.50796037 p1 ( gdx sol )
(infeas: 6e-14)
Dual Bounds
0.50793337 (ANTIGONE)
-4437.07482000 (COUENNE)
-645.01734950 (LINDO)
-437.61950430 (SCIP)
References Robinson, S, Cattaneo, A, and El-Said, M, Updating and Estimating a Social Accounting Matrix Using Cross Entropy Methods, Economic Systems Research, 13:1, 2001, 47-64.
Golan, A, Judge, G, and Miller, D, Maximum Entropy Econometrics, John Wiley and Sons, 1996.
Judge, G and Mittelhammer, R C, An Information Theoretic Approach to Econometrics, Cambridge University Press, New York, NY, 2012.
Source GAMS Model Library model cesam2
Application Social Accounting Matrix Balancing
Added to library 18 Aug 2014
Problem type NLP
#Variables 316
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 207
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature nonconcave
#Nonzeros in Objective 157
#Nonlinear Nonzeros in Objective 157
#Constraints 165
#Linear Constraints 124
#Quadratic Constraints 28
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 13
Operands in Gen. Nonlin. Functions mul log exp
Constraints curvature indefinite
#Nonzeros in Jacobian 663
#Nonlinear Nonzeros in Jacobian 69
#Nonzeros in (Upper-Left) Hessian of Lagrangian 226
#Nonzeros in Diagonal of Hessian of Lagrangian 170
#Blocks in Hessian of Lagrangian 179
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 6
Average blocksize in Hessian of Lagrangian 1.156425
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Infeasibility of initial point 0.3965
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        166      166        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        317      317        0        0        0        0        0        0
*  FX     53
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        821      595      226        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
          ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
          ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
          ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116
          ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129
          ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
          ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
          ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
          ,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181
          ,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194
          ,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207
          ,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220
          ,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231,x232,x233
          ,x234,x235,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246
          ,x247,x248,x249,x250,x251,x252,x253,x254,x255,x256,x257,x258,x259
          ,x260,x261,x262,x263,x264,x265,x266,x267,x268,x269,x270,x271,x272
          ,x273,x274,x275,x276,x277,x278,x279,x280,x281,x282,x283,x284,x285
          ,x286,x287,x288,x289,x290,x291,x292,x293,x294,x295,x296,x297,x298
          ,x299,x300,x301,x302,x303,x304,x305,x306,x307,x308,x309,x310,x311
          ,x312,x313,x314,x315,x316,objvar;

Positive Variables  x160,x161,x162,x163,x164,x165,x166,x167,x168,x169,x170
          ,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181,x182,x183
          ,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194,x195,x196
          ,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207,x208,x209
          ,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220,x221,x222
          ,x223,x224,x225,x226,x227,x228,x229,x230,x231,x232,x233,x234,x235
          ,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246,x247,x248
          ,x249,x250,x251,x252,x253,x254,x255,x256,x257,x258,x259,x260,x261
          ,x262,x263,x264,x265,x266,x267,x268,x269,x270,x271,x272,x273,x274
          ,x275,x276,x277,x278,x279,x280,x281,x282,x283,x284,x285,x286,x287
          ,x288,x289,x290,x291,x292,x293,x294,x295,x296,x297,x298,x299,x300
          ,x301,x302,x303,x304,x305,x306,x307,x308,x309,x310,x311,x312,x313
          ,x314,x315,x316;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
          ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
          ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
          ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
          ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
          ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166;


e1..    x112 - x121 =E= 18.4364105;

e2..    x113 - x122 =E= 21.1551365;

e3..    x114 - x123 =E= 9.78976;

e4..    x115 - x124 =E= 3.673953;

e5..    x116 - x125 =E= 9.6863185;

e6..    x117 - x126 =E= 1.3701;

e7..    x118 - x127 =E= 1.9123;

e8..    x119 - x128 =E= 2.398969;

e9..    x120 - x129 =E= 5.5690645;

e10..    x29 + x30 + x31 + x32 + x33 + x34 + x35 + x36 + x37 - x112 =E= 0;

e11..    x38 + x39 + x40 + x41 + x42 + x43 + x44 + x45 + x46 - x113 =E= 0;

e12..    x47 + x48 + x49 + x50 + x51 + x52 + x53 + x54 + x55 - x114 =E= 0;

e13..    x56 + x57 + x58 + x59 + x60 + x61 + x62 + x63 + x64 - x115 =E= 0;

e14..    x65 + x66 + x67 + x68 + x69 + x70 + x71 + x72 + x73 - x116 =E= 0;

e15..    x74 + x75 + x76 + x77 + x78 + x79 + x80 + x81 + x82 - x117 =E= 0;

e16..    x83 + x84 + x85 + x86 + x87 + x88 + x89 + x90 + x91 - x118 =E= 0;

e17..    x92 + x93 + x94 + x95 + x96 + x97 + x98 + x99 + x100 - x119 =E= 0;

e18..    x101 + x102 + x103 + x104 + x105 + x106 + x107 + x108 + x109 - x120
       =E= 0;

e19..    x29 + x38 + x47 + x56 + x65 + x74 + x83 + x92 + x101 - x112 =E= 0;

e20..    x30 + x39 + x48 + x57 + x66 + x75 + x84 + x93 + x102 - x113 =E= 0;

e21..    x31 + x40 + x49 + x58 + x67 + x76 + x85 + x94 + x103 - x114 =E= 0;

e22..    x32 + x41 + x50 + x59 + x68 + x77 + x86 + x95 + x104 - x115 =E= 0;

e23..    x33 + x42 + x51 + x60 + x69 + x78 + x87 + x96 + x105 - x116 =E= 0;

e24..    x34 + x43 + x52 + x61 + x70 + x79 + x88 + x97 + x106 - x117 =E= 0;

e25..    x35 + x44 + x53 + x62 + x71 + x80 + x89 + x98 + x107 - x118 =E= 0;

e26..    x36 + x45 + x54 + x63 + x72 + x81 + x90 + x99 + x108 - x119 =E= 0;

e27..    x37 + x46 + x55 + x64 + x73 + x82 + x91 + x100 + x109 - x120 =E= 0;

e28.. -x1*x113 + x30 =E= 0;

e29.. -x2*x116 + x33 =E= 0;

e30.. -x3*x117 + x34 =E= 0;

e31.. -x4*x120 + x37 =E= 0;

e32.. -x5*x112 + x38 =E= 0;

e33.. -x6*x116 + x42 =E= 0;

e34.. -x7*x117 + x43 =E= 0;

e35.. -x8*x118 + x44 =E= 0;

e36.. -x9*x119 + x45 =E= 0;

e37.. -x10*x112 + x47 =E= 0;

e38.. -x11*x114 + x58 =E= 0;

e39.. -x12*x117 + x61 =E= 0;

e40.. -x13*x114 + x67 =E= 0;

e41.. -x14*x115 + x68 =E= 0;

e42.. -x15*x117 + x70 =E= 0;

e43.. -x16*x120 + x73 =E= 0;

e44.. -x17*x112 + x74 =E= 0;

e45.. -x18*x113 + x75 =E= 0;

e46.. -x19*x114 + x76 =E= 0;

e47.. -x20*x115 + x77 =E= 0;

e48.. -x21*x116 + x78 =E= 0;

e49.. -x22*x120 + x91 =E= 0;

e50.. -x23*x115 + x95 =E= 0;

e51.. -x24*x116 + x96 =E= 0;

e52.. -x25*x117 + x97 =E= 0;

e53.. -x26*x118 + x98 =E= 0;

e54.. -x27*x120 + x100 =E= 0;

e55.. -x28*x113 + x102 =E= 0;

e56..    x30 - x132 =E= 14.827424;

e57..    x34 - x134 =E= -0.000327;

e58..    x37 - x135 =E= 1.488157;

e59..    x43 - x138 =E= 1.5645;

e60..    x44 - x139 =E= 2.5185;

e61..    x45 - x140 =E= 2.597798;

e62..    x61 - x143 =E= 0.033;

e63..    x70 - x146 =E= 0.0296;

e64..    x73 - x147 =E= 0.2;

e65..    x75 - x149 =E= 0.3574;

e66..    x91 - x153 =E= 1.7123;

e67..    x97 - x156 =E= -0.356673;

e68..    x98 - x157 =E= -0.4062;

e69..    x100 - x158 =E= 2.163857;

e70..    x102 - x159 =E= 5.573815;

e71.. -0.213455359357076*exp(x133) + x2 =E= 0;

e72.. -0.428981457932639*exp(x136) + x5 =E= 0;

e73.. -0.706421402256235*exp(x137) + x6 =E= 0;

e74.. -0.531271066405917*exp(x141) + x10 =E= 0;

e75.. -0.37852116602787*exp(x142) + x11 =E= 0;

e76.. -0.613866884603052*exp(x144) + x13 =E= 0;

e77.. -0.912812569152467*exp(x145) + x14 =E= 0;

e78.. -0.0397474756614438*exp(x148) + x17 =E= 0;

e79.. -0.00761194936907785*exp(x150) + x19 =E= 0;

e80.. -0.0456959504315114*exp(x151) + x20 =E= 0;

e81.. -0.0141724551070975*exp(x152) + x21 =E= 0;

e82.. -0.0414914804160212*exp(x154) + x23 =E= 0;

e83.. -0.0659507832795914*exp(x155) + x24 =E= 0;

e84..  - x47 + x110 =E= 0;

e85..    x34 - x47 - x74 - x75 + x111 =E= 0;

e86..    x110 - x130 =E= 9.805414;

e87..    x111 - x131 =E= 10.896741;

e88..    x121 + 2.765461575*x160 + 1.84364105*x161 + 0.921820525*x162
       - 0.921820525*x164 - 1.84364105*x165 - 2.765461575*x166 =E= 0;

e89..    x122 + 3.173270475*x167 + 2.11551365*x168 + 1.057756825*x169
       - 1.057756825*x171 - 2.11551365*x172 - 3.173270475*x173 =E= 0;

e90..    x123 + 1.468464*x174 + 0.978976*x175 + 0.489488*x176 - 0.489488*x178
       - 0.978976*x179 - 1.468464*x180 =E= 0;

e91..    x124 + 0.55109295*x181 + 0.3673953*x182 + 0.18369765*x183
       - 0.18369765*x185 - 0.3673953*x186 - 0.55109295*x187 =E= 0;

e92..    x125 + 1.452947775*x188 + 0.96863185*x189 + 0.484315925*x190
       - 0.484315925*x192 - 0.96863185*x193 - 1.452947775*x194 =E= 0;

e93..    x126 + 0.205515*x195 + 0.13701*x196 + 0.068505*x197 - 0.068505*x199
       - 0.13701*x200 - 0.205515*x201 =E= 0;

e94..    x127 + 0.286845*x202 + 0.19123*x203 + 0.095615*x204 - 0.095615*x206
       - 0.19123*x207 - 0.286845*x208 =E= 0;

e95..    x128 + 0.35984535*x209 + 0.2398969*x210 + 0.11994845*x211
       - 0.11994845*x213 - 0.2398969*x214 - 0.35984535*x215 =E= 0;

e96..    x129 + 0.835359675*x216 + 0.55690645*x217 + 0.278453225*x218
       - 0.278453225*x220 - 0.55690645*x221 - 0.835359675*x222 =E= 0;

e97..    x130 + 1.4708121*x223 + 0.73540605*x224 - 0.73540605*x226
       - 1.4708121*x227 =E= 0;

e98..    x131 + 1.63451115*x228 + 0.817255575*x229 - 0.817255575*x231
       - 1.63451115*x232 =E= 0;

e99..    x132 + 11.120568*x233 - 11.120568*x235 =E= 0;

e100..    x133 + 0.75*x236 - 0.75*x238 =E= 0;

e101..    x134 + 0.00024525*x239 - 0.00024525*x241 =E= 0;

e102..    x135 + 1.11611775*x242 - 1.11611775*x244 =E= 0;

e103..    x136 + 0.75*x245 - 0.75*x247 =E= 0;

e104..    x137 + 0.75*x248 - 0.75*x250 =E= 0;

e105..    x138 + 1.173375*x251 - 1.173375*x253 =E= 0;

e106..    x139 + 1.888875*x254 - 1.888875*x256 =E= 0;

e107..    x140 + 1.9483485*x257 - 1.9483485*x259 =E= 0;

e108..    x141 + 0.75*x260 - 0.75*x262 =E= 0;

e109..    x142 + 0.75*x263 - 0.75*x265 =E= 0;

e110..    x143 + 0.02475*x266 - 0.02475*x268 =E= 0;

e111..    x144 + 0.75*x269 - 0.75*x271 =E= 0;

e112..    x145 + 0.75*x272 - 0.75*x274 =E= 0;

e113..    x146 + 0.0222*x275 - 0.0222*x277 =E= 0;

e114..    x147 + 0.15*x278 - 0.15*x280 =E= 0;

e115..    x148 + 0.75*x281 - 0.75*x283 =E= 0;

e116..    x149 + 0.26805*x284 - 0.26805*x286 =E= 0;

e117..    x150 + 0.75*x287 - 0.75*x289 =E= 0;

e118..    x151 + 0.75*x290 - 0.75*x292 =E= 0;

e119..    x152 + 0.75*x293 - 0.75*x295 =E= 0;

e120..    x153 + 1.284225*x296 - 1.284225*x298 =E= 0;

e121..    x154 + 0.75*x299 - 0.75*x301 =E= 0;

e122..    x155 + 0.75*x302 - 0.75*x304 =E= 0;

e123..    x156 + 0.26750475*x305 - 0.26750475*x307 =E= 0;

e124..    x157 + 0.30465*x308 - 0.30465*x310 =E= 0;

e125..    x158 + 1.62289275*x311 - 1.62289275*x313 =E= 0;

e126..    x159 + 4.18036125*x314 - 4.18036125*x316 =E= 0;

e127..    x160 + x161 + x162 + x163 + x164 + x165 + x166 =E= 1;

e128..    x167 + x168 + x169 + x170 + x171 + x172 + x173 =E= 1;

e129..    x174 + x175 + x176 + x177 + x178 + x179 + x180 =E= 1;

e130..    x181 + x182 + x183 + x184 + x185 + x186 + x187 =E= 1;

e131..    x188 + x189 + x190 + x191 + x192 + x193 + x194 =E= 1;

e132..    x195 + x196 + x197 + x198 + x199 + x200 + x201 =E= 1;

e133..    x202 + x203 + x204 + x205 + x206 + x207 + x208 =E= 1;

e134..    x209 + x210 + x211 + x212 + x213 + x214 + x215 =E= 1;

e135..    x216 + x217 + x218 + x219 + x220 + x221 + x222 =E= 1;

e136..    x223 + x224 + x225 + x226 + x227 =E= 1;

e137..    x228 + x229 + x230 + x231 + x232 =E= 1;

e138..    x233 + x234 + x235 =E= 1;

e139..    x236 + x237 + x238 =E= 1;

e140..    x239 + x240 + x241 =E= 1;

e141..    x242 + x243 + x244 =E= 1;

e142..    x245 + x246 + x247 =E= 1;

e143..    x248 + x249 + x250 =E= 1;

e144..    x251 + x252 + x253 =E= 1;

e145..    x254 + x255 + x256 =E= 1;

e146..    x257 + x258 + x259 =E= 1;

e147..    x260 + x261 + x262 =E= 1;

e148..    x263 + x264 + x265 =E= 1;

e149..    x266 + x267 + x268 =E= 1;

e150..    x269 + x270 + x271 =E= 1;

e151..    x272 + x273 + x274 =E= 1;

e152..    x275 + x276 + x277 =E= 1;

e153..    x278 + x279 + x280 =E= 1;

e154..    x281 + x282 + x283 =E= 1;

e155..    x284 + x285 + x286 =E= 1;

e156..    x287 + x288 + x289 =E= 1;

e157..    x290 + x291 + x292 =E= 1;

e158..    x293 + x294 + x295 =E= 1;

e159..    x296 + x297 + x298 =E= 1;

e160..    x299 + x300 + x301 =E= 1;

e161..    x302 + x303 + x304 =E= 1;

e162..    x305 + x306 + x307 =E= 1;

e163..    x308 + x309 + x310 =E= 1;

e164..    x311 + x312 + x313 =E= 1;

e165..    x314 + x315 + x316 =E= 1;

e166.. -((2.89037157789618 + log(1e-8 + x233))*x233 + (0.117783024406384 + log(
       1e-8 + x234))*x234 + (2.89037157789618 + log(1e-8 + x235))*x235 + (
       2.89037157789618 + log(1e-8 + x236))*x236 + (0.117783024406384 + log(
       1e-8 + x237))*x237 + (2.89037157789618 + log(1e-8 + x238))*x238 + (
       2.89037157789618 + log(1e-8 + x239))*x239 + (0.117783024406384 + log(
       1e-8 + x240))*x240 + (2.89037157789618 + log(1e-8 + x241))*x241 + (
       2.89037157789618 + log(1e-8 + x242))*x242 + (0.117783024406384 + log(
       1e-8 + x243))*x243 + (2.89037157789618 + log(1e-8 + x244))*x244 + (
       2.89037157789618 + log(1e-8 + x245))*x245 + (0.117783024406384 + log(
       1e-8 + x246))*x246 + (2.89037157789618 + log(1e-8 + x247))*x247 + (
       2.89037157789618 + log(1e-8 + x248))*x248 + (0.117783024406384 + log(
       1e-8 + x249))*x249 + (2.89037157789618 + log(1e-8 + x250))*x250 + (
       2.89037157789618 + log(1e-8 + x251))*x251 + (0.117783024406384 + log(
       1e-8 + x252))*x252 + (2.89037157789618 + log(1e-8 + x253))*x253 + (
       2.89037157789618 + log(1e-8 + x254))*x254 + (0.117783024406384 + log(
       1e-8 + x255))*x255 + (2.89037157789618 + log(1e-8 + x256))*x256 + (
       2.89037157789618 + log(1e-8 + x257))*x257 + (0.117783024406384 + log(
       1e-8 + x258))*x258 + (2.89037157789618 + log(1e-8 + x259))*x259 + (
       2.89037157789618 + log(1e-8 + x260))*x260 + (0.117783024406384 + log(
       1e-8 + x261))*x261 + (2.89037157789618 + log(1e-8 + x262))*x262 + (
       2.89037157789618 + log(1e-8 + x263))*x263 + (0.117783024406384 + log(
       1e-8 + x264))*x264 + (2.89037157789618 + log(1e-8 + x265))*x265 + (
       2.89037157789618 + log(1e-8 + x266))*x266 + (0.117783024406384 + log(
       1e-8 + x267))*x267 + (2.89037157789618 + log(1e-8 + x268))*x268 + (
       2.89037157789618 + log(1e-8 + x269))*x269 + (0.117783024406384 + log(
       1e-8 + x270))*x270 + (2.89037157789618 + log(1e-8 + x271))*x271 + (
       2.89037157789618 + log(1e-8 + x272))*x272 + (0.117783024406384 + log(
       1e-8 + x273))*x273 + (2.89037157789618 + log(1e-8 + x274))*x274 + (
       2.89037157789618 + log(1e-8 + x275))*x275 + (0.117783024406384 + log(
       1e-8 + x276))*x276 + (2.89037157789618 + log(1e-8 + x277))*x277 + (
       2.89037157789618 + log(1e-8 + x278))*x278 + (0.117783024406384 + log(
       1e-8 + x279))*x279 + (2.89037157789618 + log(1e-8 + x280))*x280 + (
       2.89037157789618 + log(1e-8 + x281))*x281 + (0.117783024406384 + log(
       1e-8 + x282))*x282 + (2.89037157789618 + log(1e-8 + x283))*x283 + (
       2.89037157789618 + log(1e-8 + x284))*x284 + (0.117783024406384 + log(
       1e-8 + x285))*x285 + (2.89037157789618 + log(1e-8 + x286))*x286 + (
       2.89037157789618 + log(1e-8 + x287))*x287 + (0.117783024406384 + log(
       1e-8 + x288))*x288 + (2.89037157789618 + log(1e-8 + x289))*x289 + (
       2.89037157789618 + log(1e-8 + x290))*x290 + (0.117783024406384 + log(
       1e-8 + x291))*x291 + (2.89037157789618 + log(1e-8 + x292))*x292 + (
       2.89037157789618 + log(1e-8 + x293))*x293 + (0.117783024406384 + log(
       1e-8 + x294))*x294 + (2.89037157789618 + log(1e-8 + x295))*x295 + (
       2.89037157789618 + log(1e-8 + x296))*x296 + (0.117783024406384 + log(
       1e-8 + x297))*x297 + (2.89037157789618 + log(1e-8 + x298))*x298 + (
       2.89037157789618 + log(1e-8 + x299))*x299 + (0.117783024406384 + log(
       1e-8 + x300))*x300 + (2.89037157789618 + log(1e-8 + x301))*x301 + (
       2.89037157789618 + log(1e-8 + x302))*x302 + (0.117783024406384 + log(
       1e-8 + x303))*x303 + (2.89037157789618 + log(1e-8 + x304))*x304 + (
       2.89037157789618 + log(1e-8 + x305))*x305 + (0.117783024406384 + log(
       1e-8 + x306))*x306 + (2.89037157789618 + log(1e-8 + x307))*x307 + (
       2.89037157789618 + log(1e-8 + x308))*x308 + (0.117783024406384 + log(
       1e-8 + x309))*x309 + (2.89037157789618 + log(1e-8 + x310))*x310 + (
       2.89037157789618 + log(1e-8 + x311))*x311 + (0.117783024406384 + log(
       1e-8 + x312))*x312 + (2.89037157789618 + log(1e-8 + x313))*x313 + (
       2.89037157789618 + log(1e-8 + x314))*x314 + (0.117783024406384 + log(
       1e-8 + x315))*x315 + (2.89037157789618 + log(1e-8 + x316))*x316 + (
       1.94591007905532 + log(1e-8 + x160))*x160 + (1.94591007905532 + log(1e-8
        + x161))*x161 + (1.94591007905532 + log(1e-8 + x162))*x162 + (
       1.94591007905532 + log(1e-8 + x163))*x163 + (1.94591007905532 + log(1e-8
        + x164))*x164 + (1.94591007905532 + log(1e-8 + x165))*x165 + (
       1.94591007905532 + log(1e-8 + x166))*x166 + (1.94591007905532 + log(1e-8
        + x167))*x167 + (1.94591007905532 + log(1e-8 + x168))*x168 + (
       1.94591007905532 + log(1e-8 + x169))*x169 + (1.94591007905532 + log(1e-8
        + x170))*x170 + (1.94591007905532 + log(1e-8 + x171))*x171 + (
       1.94591007905532 + log(1e-8 + x172))*x172 + (1.94591007905532 + log(1e-8
        + x173))*x173 + (1.94591007905532 + log(1e-8 + x174))*x174 + (
       1.94591007905532 + log(1e-8 + x175))*x175 + (1.94591007905532 + log(1e-8
        + x176))*x176 + (1.94591007905532 + log(1e-8 + x177))*x177 + (
       1.94591007905532 + log(1e-8 + x178))*x178 + (1.94591007905532 + log(1e-8
        + x179))*x179 + (1.94591007905532 + log(1e-8 + x180))*x180 + (
       1.94591007905532 + log(1e-8 + x181))*x181 + (1.94591007905532 + log(1e-8
        + x182))*x182 + (1.94591007905532 + log(1e-8 + x183))*x183 + (
       1.94591007905532 + log(1e-8 + x184))*x184 + (1.94591007905532 + log(1e-8
        + x185))*x185 + (1.94591007905532 + log(1e-8 + x186))*x186 + (
       1.94591007905532 + log(1e-8 + x187))*x187 + (1.94591007905532 + log(1e-8
        + x188))*x188 + (1.94591007905532 + log(1e-8 + x189))*x189 + (
       1.94591007905532 + log(1e-8 + x190))*x190 + (1.94591007905532 + log(1e-8
        + x191))*x191 + (1.94591007905532 + log(1e-8 + x192))*x192 + (
       1.94591007905532 + log(1e-8 + x193))*x193 + (1.94591007905532 + log(1e-8
        + x194))*x194 + (1.94591007905532 + log(1e-8 + x195))*x195 + (
       1.94591007905532 + log(1e-8 + x196))*x196 + (1.94591007905532 + log(1e-8
        + x197))*x197 + (1.94591007905532 + log(1e-8 + x198))*x198 + (
       1.94591007905532 + log(1e-8 + x199))*x199 + (1.94591007905532 + log(1e-8
        + x200))*x200 + (1.94591007905532 + log(1e-8 + x201))*x201 + (
       1.94591007905532 + log(1e-8 + x202))*x202 + (1.94591007905532 + log(1e-8
        + x203))*x203 + (1.94591007905532 + log(1e-8 + x204))*x204 + (
       1.94591007905532 + log(1e-8 + x205))*x205 + (1.94591007905532 + log(1e-8
        + x206))*x206 + (1.94591007905532 + log(1e-8 + x207))*x207 + (
       1.94591007905532 + log(1e-8 + x208))*x208 + (1.94591007905532 + log(1e-8
        + x209))*x209 + (1.94591007905532 + log(1e-8 + x210))*x210 + (
       1.94591007905532 + log(1e-8 + x211))*x211 + (1.94591007905532 + log(1e-8
        + x212))*x212 + (1.94591007905532 + log(1e-8 + x213))*x213 + (
       1.94591007905532 + log(1e-8 + x214))*x214 + (1.94591007905532 + log(1e-8
        + x215))*x215 + (1.94591007905532 + log(1e-8 + x216))*x216 + (
       1.94591007905532 + log(1e-8 + x217))*x217 + (1.94591007905532 + log(1e-8
        + x218))*x218 + (1.94591007905532 + log(1e-8 + x219))*x219 + (
       1.94591007905532 + log(1e-8 + x220))*x220 + (1.94591007905532 + log(1e-8
        + x221))*x221 + (1.94591007905532 + log(1e-8 + x222))*x222 + (
       5.0875947152337 + log(1e-8 + x223))*x223 + (1.62186038180766 + log(1e-8
        + x224))*x224 + (0.523248126889548 + log(1e-8 + x225))*x225 + (
       1.62186038180766 + log(1e-8 + x226))*x226 + (5.0875947152337 + log(1e-8
        + x227))*x227 + (5.0875947152337 + log(1e-8 + x228))*x228 + (
       1.62186038180766 + log(1e-8 + x229))*x229 + (0.523248126889548 + log(
       1e-8 + x230))*x230 + (1.62186038180766 + log(1e-8 + x231))*x231 + (
       5.0875947152337 + log(1e-8 + x232))*x232) + objvar =E= 0;

* set non-default bounds
x29.fx = 0;
x31.fx = 0;
x32.fx = 0;
x35.fx = 0;
x36.fx = 0;
x39.fx = 0;
x40.fx = 0;
x41.fx = 0;
x46.fx = 0;
x48.fx = 0;
x49.fx = 0;
x50.fx = 0;
x51.fx = 0;
x52.fx = 0;
x53.fx = 0;
x54.fx = 0;
x55.fx = 0;
x56.fx = 0;
x57.fx = 0;
x59.fx = 0;
x60.fx = 0;
x62.fx = 0;
x63.fx = 0;
x64.fx = 0;
x65.fx = 0;
x66.fx = 0;
x69.fx = 0;
x71.fx = 0;
x72.fx = 0;
x79.fx = 0;
x80.fx = 0;
x81.fx = 0;
x82.fx = 0;
x83.fx = 0;
x84.fx = 0;
x85.fx = 0;
x86.fx = 0;
x87.fx = 0;
x88.fx = 0;
x89.fx = 0;
x90.fx = 0;
x92.fx = 0;
x93.fx = 0;
x94.fx = 0;
x99.fx = 0;
x101.fx = 0;
x103.fx = 0;
x104.fx = 0;
x105.fx = 0;
x106.fx = 0;
x107.fx = 0;
x108.fx = 0;
x109.fx = 0;
x160.up = 1;
x161.up = 1;
x162.up = 1;
x163.up = 1;
x164.up = 1;
x165.up = 1;
x166.up = 1;
x167.up = 1;
x168.up = 1;
x169.up = 1;
x170.up = 1;
x171.up = 1;
x172.up = 1;
x173.up = 1;
x174.up = 1;
x175.up = 1;
x176.up = 1;
x177.up = 1;
x178.up = 1;
x179.up = 1;
x180.up = 1;
x181.up = 1;
x182.up = 1;
x183.up = 1;
x184.up = 1;
x185.up = 1;
x186.up = 1;
x187.up = 1;
x188.up = 1;
x189.up = 1;
x190.up = 1;
x191.up = 1;
x192.up = 1;
x193.up = 1;
x194.up = 1;
x195.up = 1;
x196.up = 1;
x197.up = 1;
x198.up = 1;
x199.up = 1;
x200.up = 1;
x201.up = 1;
x202.up = 1;
x203.up = 1;
x204.up = 1;
x205.up = 1;
x206.up = 1;
x207.up = 1;
x208.up = 1;
x209.up = 1;
x210.up = 1;
x211.up = 1;
x212.up = 1;
x213.up = 1;
x214.up = 1;
x215.up = 1;
x216.up = 1;
x217.up = 1;
x218.up = 1;
x219.up = 1;
x220.up = 1;
x221.up = 1;
x222.up = 1;
x223.up = 1;
x224.up = 1;
x225.up = 1;
x226.up = 1;
x227.up = 1;
x228.up = 1;
x229.up = 1;
x230.up = 1;
x231.up = 1;
x232.up = 1;
x233.up = 1;
x234.up = 1;
x235.up = 1;
x236.up = 1;
x237.up = 1;
x238.up = 1;
x239.up = 1;
x240.up = 1;
x241.up = 1;
x242.up = 1;
x243.up = 1;
x244.up = 1;
x245.up = 1;
x246.up = 1;
x247.up = 1;
x248.up = 1;
x249.up = 1;
x250.up = 1;
x251.up = 1;
x252.up = 1;
x253.up = 1;
x254.up = 1;
x255.up = 1;
x256.up = 1;
x257.up = 1;
x258.up = 1;
x259.up = 1;
x260.up = 1;
x261.up = 1;
x262.up = 1;
x263.up = 1;
x264.up = 1;
x265.up = 1;
x266.up = 1;
x267.up = 1;
x268.up = 1;
x269.up = 1;
x270.up = 1;
x271.up = 1;
x272.up = 1;
x273.up = 1;
x274.up = 1;
x275.up = 1;
x276.up = 1;
x277.up = 1;
x278.up = 1;
x279.up = 1;
x280.up = 1;
x281.up = 1;
x282.up = 1;
x283.up = 1;
x284.up = 1;
x285.up = 1;
x286.up = 1;
x287.up = 1;
x288.up = 1;
x289.up = 1;
x290.up = 1;
x291.up = 1;
x292.up = 1;
x293.up = 1;
x294.up = 1;
x295.up = 1;
x296.up = 1;
x297.up = 1;
x298.up = 1;
x299.up = 1;
x300.up = 1;
x301.up = 1;
x302.up = 1;
x303.up = 1;
x304.up = 1;
x305.up = 1;
x306.up = 1;
x307.up = 1;
x308.up = 1;
x309.up = 1;
x310.up = 1;
x311.up = 1;
x312.up = 1;
x313.up = 1;
x314.up = 1;
x315.up = 1;
x316.up = 1;

* set non-default levels
x1.l = 0.714277270296959;
x2.l = 0.213455359357076;
x3.l = -0.000257460042516337;
x4.l = 0.267446625046681;
x5.l = 0.428981457932639;
x6.l = 0.706421402256235;
x7.l = 1.23179277222266;
x8.l = 1.1923022297969;
x9.l = 1;
x10.l = 0.531271066405917;
x11.l = 0.37852116602787;
x12.l = 0.0259822061255019;
x13.l = 0.613866884603052;
x14.l = 0.912812569152467;
x15.l = 0.0233052515549957;
x16.l = 0.0359433346141142;
x17.l = 0.0397474756614438;
x18.l = 0.0172169283352343;
x19.l = 0.00761194936907785;
x20.l = 0.0456959504315114;
x21.l = 0.0141724551070975;
x22.l = 0.307728859298738;
x23.l = 0.0414914804160212;
x24.l = 0.0659507832795914;
x25.l = -0.280822769860641;
x26.l = -0.192302229796904;
x27.l = 0.388881181040466;
x28.l = 0.268505801367806;
x30.l = 14.827424;
x33.l = 2.101049;
x34.l = -0.000327;
x37.l = 1.488157;
x38.l = 7.917504;
x42.l = 6.953332;
x43.l = 1.5645;
x44.l = 2.5185;
x45.l = 2.597798;
x47.l = 9.805414;
x58.l = 3.699706;
x61.l = 0.033;
x67.l = 6;
x68.l = 3.3;
x70.l = 0.0296;
x73.l = 0.2;
x74.l = 0.7336;
x75.l = 0.3574;
x76.l = 0.0744;
x77.l = 0.1652;
x78.l = 0.1395;
x91.l = 1.7123;
x95.l = 0.15;
x96.l = 0.649156;
x97.l = -0.356673;
x98.l = -0.4062;
x100.l = 2.163857;
x102.l = 5.573815;
x110.l = 9.805414;
x111.l = 10.896741;
x112.l = 18.4364105;
x113.l = 21.1551365;
x114.l = 9.78976;
x115.l = 3.673953;
x116.l = 9.6863185;
x117.l = 1.3701;
x118.l = 1.9123;
x119.l = 2.398969;
x120.l = 5.5690645;
x160.l = 0.142857142857143;
x161.l = 0.142857142857143;
x162.l = 0.142857142857143;
x163.l = 0.142857142857143;
x164.l = 0.142857142857143;
x165.l = 0.142857142857143;
x166.l = 0.142857142857143;
x167.l = 0.142857142857143;
x168.l = 0.142857142857143;
x169.l = 0.142857142857143;
x170.l = 0.142857142857143;
x171.l = 0.142857142857143;
x172.l = 0.142857142857143;
x173.l = 0.142857142857143;
x174.l = 0.142857142857143;
x175.l = 0.142857142857143;
x176.l = 0.142857142857143;
x177.l = 0.142857142857143;
x178.l = 0.142857142857143;
x179.l = 0.142857142857143;
x180.l = 0.142857142857143;
x181.l = 0.142857142857143;
x182.l = 0.142857142857143;
x183.l = 0.142857142857143;
x184.l = 0.142857142857143;
x185.l = 0.142857142857143;
x186.l = 0.142857142857143;
x187.l = 0.142857142857143;
x188.l = 0.142857142857143;
x189.l = 0.142857142857143;
x190.l = 0.142857142857143;
x191.l = 0.142857142857143;
x192.l = 0.142857142857143;
x193.l = 0.142857142857143;
x194.l = 0.142857142857143;
x195.l = 0.142857142857143;
x196.l = 0.142857142857143;
x197.l = 0.142857142857143;
x198.l = 0.142857142857143;
x199.l = 0.142857142857143;
x200.l = 0.142857142857143;
x201.l = 0.142857142857143;
x202.l = 0.142857142857143;
x203.l = 0.142857142857143;
x204.l = 0.142857142857143;
x205.l = 0.142857142857143;
x206.l = 0.142857142857143;
x207.l = 0.142857142857143;
x208.l = 0.142857142857143;
x209.l = 0.142857142857143;
x210.l = 0.142857142857143;
x211.l = 0.142857142857143;
x212.l = 0.142857142857143;
x213.l = 0.142857142857143;
x214.l = 0.142857142857143;
x215.l = 0.142857142857143;
x216.l = 0.142857142857143;
x217.l = 0.142857142857143;
x218.l = 0.142857142857143;
x219.l = 0.142857142857143;
x220.l = 0.142857142857143;
x221.l = 0.142857142857143;
x222.l = 0.142857142857143;
x223.l = 0.00617283950617284;
x224.l = 0.197530864197531;
x225.l = 0.592592592592593;
x226.l = 0.197530864197531;
x227.l = 0.00617283950617284;
x228.l = 0.00617283950617284;
x229.l = 0.197530864197531;
x230.l = 0.592592592592593;
x231.l = 0.197530864197531;
x232.l = 0.00617283950617284;
x233.l = 0.0555555555555556;
x234.l = 0.888888888888889;
x235.l = 0.0555555555555556;
x236.l = 0.0555555555555556;
x237.l = 0.888888888888889;
x238.l = 0.0555555555555556;
x239.l = 0.0555555555555556;
x240.l = 0.888888888888889;
x241.l = 0.0555555555555556;
x242.l = 0.0555555555555556;
x243.l = 0.888888888888889;
x244.l = 0.0555555555555556;
x245.l = 0.0555555555555556;
x246.l = 0.888888888888889;
x247.l = 0.0555555555555556;
x248.l = 0.0555555555555556;
x249.l = 0.888888888888889;
x250.l = 0.0555555555555556;
x251.l = 0.0555555555555556;
x252.l = 0.888888888888889;
x253.l = 0.0555555555555556;
x254.l = 0.0555555555555556;
x255.l = 0.888888888888889;
x256.l = 0.0555555555555556;
x257.l = 0.0555555555555556;
x258.l = 0.888888888888889;
x259.l = 0.0555555555555556;
x260.l = 0.0555555555555556;
x261.l = 0.888888888888889;
x262.l = 0.0555555555555556;
x263.l = 0.0555555555555556;
x264.l = 0.888888888888889;
x265.l = 0.0555555555555556;
x266.l = 0.0555555555555556;
x267.l = 0.888888888888889;
x268.l = 0.0555555555555556;
x269.l = 0.0555555555555556;
x270.l = 0.888888888888889;
x271.l = 0.0555555555555556;
x272.l = 0.0555555555555556;
x273.l = 0.888888888888889;
x274.l = 0.0555555555555556;
x275.l = 0.0555555555555556;
x276.l = 0.888888888888889;
x277.l = 0.0555555555555556;
x278.l = 0.0555555555555556;
x279.l = 0.888888888888889;
x280.l = 0.0555555555555556;
x281.l = 0.0555555555555556;
x282.l = 0.888888888888889;
x283.l = 0.0555555555555556;
x284.l = 0.0555555555555556;
x285.l = 0.888888888888889;
x286.l = 0.0555555555555556;
x287.l = 0.0555555555555556;
x288.l = 0.888888888888889;
x289.l = 0.0555555555555556;
x290.l = 0.0555555555555556;
x291.l = 0.888888888888889;
x292.l = 0.0555555555555556;
x293.l = 0.0555555555555556;
x294.l = 0.888888888888889;
x295.l = 0.0555555555555556;
x296.l = 0.0555555555555556;
x297.l = 0.888888888888889;
x298.l = 0.0555555555555556;
x299.l = 0.0555555555555556;
x300.l = 0.888888888888889;
x301.l = 0.0555555555555556;
x302.l = 0.0555555555555556;
x303.l = 0.888888888888889;
x304.l = 0.0555555555555556;
x305.l = 0.0555555555555556;
x306.l = 0.888888888888889;
x307.l = 0.0555555555555556;
x308.l = 0.0555555555555556;
x309.l = 0.888888888888889;
x310.l = 0.0555555555555556;
x311.l = 0.0555555555555556;
x312.l = 0.888888888888889;
x313.l = 0.0555555555555556;
x314.l = 0.0555555555555556;
x315.l = 0.888888888888889;
x316.l = 0.0555555555555556;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2018-08-07 Git hash: fccdb193
Imprint / Privacy Policy