MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance: chain100

Formats ams gms mod nl osil
Primal Bounds
5.06978461 p1 ( gdx sol )
(infeas: 4e-16)
Dual Bounds
0.09367008 (ANTIGONE)
-173.12294830 (BARON)
-106.89896800 (COUENNE)
-131.80290460 (LINDO)
-315.16487280 (SCIP)
References Cesari, L, Optimization - Theory and Applications, Springer Verlag, 1983.
Dolan, E D and More, J J, Benchmarking Optimization Software with COPS, Tech. Rep. ANL/MCS-246, Mathematics and Computer Science Division, 2000.
Source GAMS Model Library model chain, Constrained Optimization Problem Set (COPS)
Application Hanging Chain
Added to library 31 Jul 2001
Problem type NLP
#Variables 202
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 202
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature indefinite
#Nonzeros in Objective 202
#Nonlinear Nonzeros in Objective 202
#Constraints 101
#Linear Constraints 100
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 1
Operands in Gen. Nonlin. Functions mul sqrt sqr
Constraints curvature indefinite
#Nonzeros in Jacobian 501
#Nonlinear Nonzeros in Jacobian 101
#Nonzeros in (Upper-Left) Hessian of Lagrangian 303
#Nonzeros in Diagonal of Hessian of Lagrangian 101
#Blocks in Hessian of Lagrangian 101
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Infeasibility of initial point 1.193
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        102      102        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        203      203        0        0        0        0        0        0
*  FX      2
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        704      401      303        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
          ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
          ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
          ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116
          ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129
          ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
          ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
          ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
          ,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181
          ,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194
          ,x195,x196,x197,x198,x199,x200,x201,x202,objvar;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102;


e1.. -0.005*(sqrt(1 + sqr(x102))*x1 + sqrt(1 + sqr(x103))*x2 + sqrt(1 + sqr(
     x103))*x2 + sqrt(1 + sqr(x104))*x3 + sqrt(1 + sqr(x104))*x3 + sqrt(1 + 
     sqr(x105))*x4 + sqrt(1 + sqr(x105))*x4 + sqrt(1 + sqr(x106))*x5 + sqrt(1
      + sqr(x106))*x5 + sqrt(1 + sqr(x107))*x6 + sqrt(1 + sqr(x107))*x6 + sqrt(
     1 + sqr(x108))*x7 + sqrt(1 + sqr(x108))*x7 + sqrt(1 + sqr(x109))*x8 + 
     sqrt(1 + sqr(x109))*x8 + sqrt(1 + sqr(x110))*x9 + sqrt(1 + sqr(x110))*x9
      + sqrt(1 + sqr(x111))*x10 + sqrt(1 + sqr(x111))*x10 + sqrt(1 + sqr(x112))
     *x11 + sqrt(1 + sqr(x112))*x11 + sqrt(1 + sqr(x113))*x12 + sqrt(1 + sqr(
     x113))*x12 + sqrt(1 + sqr(x114))*x13 + sqrt(1 + sqr(x114))*x13 + sqrt(1 + 
     sqr(x115))*x14 + sqrt(1 + sqr(x115))*x14 + sqrt(1 + sqr(x116))*x15 + sqrt(
     1 + sqr(x116))*x15 + sqrt(1 + sqr(x117))*x16 + sqrt(1 + sqr(x117))*x16 + 
     sqrt(1 + sqr(x118))*x17 + sqrt(1 + sqr(x118))*x17 + sqrt(1 + sqr(x119))*
     x18 + sqrt(1 + sqr(x119))*x18 + sqrt(1 + sqr(x120))*x19 + sqrt(1 + sqr(
     x120))*x19 + sqrt(1 + sqr(x121))*x20 + sqrt(1 + sqr(x121))*x20 + sqrt(1 + 
     sqr(x122))*x21 + sqrt(1 + sqr(x122))*x21 + sqrt(1 + sqr(x123))*x22 + sqrt(
     1 + sqr(x123))*x22 + sqrt(1 + sqr(x124))*x23 + sqrt(1 + sqr(x124))*x23 + 
     sqrt(1 + sqr(x125))*x24 + sqrt(1 + sqr(x125))*x24 + sqrt(1 + sqr(x126))*
     x25 + sqrt(1 + sqr(x126))*x25 + sqrt(1 + sqr(x127))*x26 + sqrt(1 + sqr(
     x127))*x26 + sqrt(1 + sqr(x128))*x27 + sqrt(1 + sqr(x128))*x27 + sqrt(1 + 
     sqr(x129))*x28 + sqrt(1 + sqr(x129))*x28 + sqrt(1 + sqr(x130))*x29 + sqrt(
     1 + sqr(x130))*x29 + sqrt(1 + sqr(x131))*x30 + sqrt(1 + sqr(x131))*x30 + 
     sqrt(1 + sqr(x132))*x31 + sqrt(1 + sqr(x132))*x31 + sqrt(1 + sqr(x133))*
     x32 + sqrt(1 + sqr(x133))*x32 + sqrt(1 + sqr(x134))*x33 + sqrt(1 + sqr(
     x134))*x33 + sqrt(1 + sqr(x135))*x34 + sqrt(1 + sqr(x135))*x34 + sqrt(1 + 
     sqr(x136))*x35 + sqrt(1 + sqr(x136))*x35 + sqrt(1 + sqr(x137))*x36 + sqrt(
     1 + sqr(x137))*x36 + sqrt(1 + sqr(x138))*x37 + sqrt(1 + sqr(x138))*x37 + 
     sqrt(1 + sqr(x139))*x38 + sqrt(1 + sqr(x139))*x38 + sqrt(1 + sqr(x140))*
     x39 + sqrt(1 + sqr(x140))*x39 + sqrt(1 + sqr(x141))*x40 + sqrt(1 + sqr(
     x141))*x40 + sqrt(1 + sqr(x142))*x41 + sqrt(1 + sqr(x142))*x41 + sqrt(1 + 
     sqr(x143))*x42 + sqrt(1 + sqr(x143))*x42 + sqrt(1 + sqr(x144))*x43 + sqrt(
     1 + sqr(x144))*x43 + sqrt(1 + sqr(x145))*x44 + sqrt(1 + sqr(x145))*x44 + 
     sqrt(1 + sqr(x146))*x45 + sqrt(1 + sqr(x146))*x45 + sqrt(1 + sqr(x147))*
     x46 + sqrt(1 + sqr(x147))*x46 + sqrt(1 + sqr(x148))*x47 + sqrt(1 + sqr(
     x148))*x47 + sqrt(1 + sqr(x149))*x48 + sqrt(1 + sqr(x149))*x48 + sqrt(1 + 
     sqr(x150))*x49 + sqrt(1 + sqr(x150))*x49 + sqrt(1 + sqr(x151))*x50 + sqrt(
     1 + sqr(x151))*x50 + sqrt(1 + sqr(x152))*x51 + sqrt(1 + sqr(x152))*x51 + 
     sqrt(1 + sqr(x153))*x52 + sqrt(1 + sqr(x153))*x52 + sqrt(1 + sqr(x154))*
     x53 + sqrt(1 + sqr(x154))*x53 + sqrt(1 + sqr(x155))*x54 + sqrt(1 + sqr(
     x155))*x54 + sqrt(1 + sqr(x156))*x55 + sqrt(1 + sqr(x156))*x55 + sqrt(1 + 
     sqr(x157))*x56 + sqrt(1 + sqr(x157))*x56 + sqrt(1 + sqr(x158))*x57 + sqrt(
     1 + sqr(x158))*x57 + sqrt(1 + sqr(x159))*x58 + sqrt(1 + sqr(x159))*x58 + 
     sqrt(1 + sqr(x160))*x59 + sqrt(1 + sqr(x160))*x59 + sqrt(1 + sqr(x161))*
     x60 + sqrt(1 + sqr(x161))*x60 + sqrt(1 + sqr(x162))*x61 + sqrt(1 + sqr(
     x162))*x61 + sqrt(1 + sqr(x163))*x62 + sqrt(1 + sqr(x163))*x62 + sqrt(1 + 
     sqr(x164))*x63 + sqrt(1 + sqr(x164))*x63 + sqrt(1 + sqr(x165))*x64 + sqrt(
     1 + sqr(x165))*x64 + sqrt(1 + sqr(x166))*x65 + sqrt(1 + sqr(x166))*x65 + 
     sqrt(1 + sqr(x167))*x66 + sqrt(1 + sqr(x167))*x66 + sqrt(1 + sqr(x168))*
     x67 + sqrt(1 + sqr(x168))*x67 + sqrt(1 + sqr(x169))*x68 + sqrt(1 + sqr(
     x169))*x68 + sqrt(1 + sqr(x170))*x69 + sqrt(1 + sqr(x170))*x69 + sqrt(1 + 
     sqr(x171))*x70 + sqrt(1 + sqr(x171))*x70 + sqrt(1 + sqr(x172))*x71 + sqrt(
     1 + sqr(x172))*x71 + sqrt(1 + sqr(x173))*x72 + sqrt(1 + sqr(x173))*x72 + 
     sqrt(1 + sqr(x174))*x73 + sqrt(1 + sqr(x174))*x73 + sqrt(1 + sqr(x175))*
     x74 + sqrt(1 + sqr(x175))*x74 + sqrt(1 + sqr(x176))*x75 + sqrt(1 + sqr(
     x176))*x75 + sqrt(1 + sqr(x177))*x76 + sqrt(1 + sqr(x177))*x76 + sqrt(1 + 
     sqr(x178))*x77 + sqrt(1 + sqr(x178))*x77 + sqrt(1 + sqr(x179))*x78 + sqrt(
     1 + sqr(x179))*x78 + sqrt(1 + sqr(x180))*x79 + sqrt(1 + sqr(x180))*x79 + 
     sqrt(1 + sqr(x181))*x80 + sqrt(1 + sqr(x181))*x80 + sqrt(1 + sqr(x182))*
     x81 + sqrt(1 + sqr(x182))*x81 + sqrt(1 + sqr(x183))*x82 + sqrt(1 + sqr(
     x183))*x82 + sqrt(1 + sqr(x184))*x83 + sqrt(1 + sqr(x184))*x83 + sqrt(1 + 
     sqr(x185))*x84 + sqrt(1 + sqr(x185))*x84 + sqrt(1 + sqr(x186))*x85 + sqrt(
     1 + sqr(x186))*x85 + sqrt(1 + sqr(x187))*x86 + sqrt(1 + sqr(x187))*x86 + 
     sqrt(1 + sqr(x188))*x87 + sqrt(1 + sqr(x188))*x87 + sqrt(1 + sqr(x189))*
     x88 + sqrt(1 + sqr(x189))*x88 + sqrt(1 + sqr(x190))*x89 + sqrt(1 + sqr(
     x190))*x89 + sqrt(1 + sqr(x191))*x90 + sqrt(1 + sqr(x191))*x90 + sqrt(1 + 
     sqr(x192))*x91 + sqrt(1 + sqr(x192))*x91 + sqrt(1 + sqr(x193))*x92 + sqrt(
     1 + sqr(x193))*x92 + sqrt(1 + sqr(x194))*x93 + sqrt(1 + sqr(x194))*x93 + 
     sqrt(1 + sqr(x195))*x94 + sqrt(1 + sqr(x195))*x94 + sqrt(1 + sqr(x196))*
     x95 + sqrt(1 + sqr(x196))*x95 + sqrt(1 + sqr(x197))*x96 + sqrt(1 + sqr(
     x197))*x96 + sqrt(1 + sqr(x198))*x97 + sqrt(1 + sqr(x198))*x97 + sqrt(1 + 
     sqr(x199))*x98 + sqrt(1 + sqr(x199))*x98 + sqrt(1 + sqr(x200))*x99 + sqrt(
     1 + sqr(x200))*x99 + sqrt(1 + sqr(x201))*x100 + sqrt(1 + sqr(x201))*x100
      + sqrt(1 + sqr(x202))*x101) + objvar =E= 0;

e2..  - x1 + x2 - 0.005*x102 - 0.005*x103 =E= 0;

e3..  - x2 + x3 - 0.005*x103 - 0.005*x104 =E= 0;

e4..  - x3 + x4 - 0.005*x104 - 0.005*x105 =E= 0;

e5..  - x4 + x5 - 0.005*x105 - 0.005*x106 =E= 0;

e6..  - x5 + x6 - 0.005*x106 - 0.005*x107 =E= 0;

e7..  - x6 + x7 - 0.005*x107 - 0.005*x108 =E= 0;

e8..  - x7 + x8 - 0.005*x108 - 0.005*x109 =E= 0;

e9..  - x8 + x9 - 0.005*x109 - 0.005*x110 =E= 0;

e10..  - x9 + x10 - 0.005*x110 - 0.005*x111 =E= 0;

e11..  - x10 + x11 - 0.005*x111 - 0.005*x112 =E= 0;

e12..  - x11 + x12 - 0.005*x112 - 0.005*x113 =E= 0;

e13..  - x12 + x13 - 0.005*x113 - 0.005*x114 =E= 0;

e14..  - x13 + x14 - 0.005*x114 - 0.005*x115 =E= 0;

e15..  - x14 + x15 - 0.005*x115 - 0.005*x116 =E= 0;

e16..  - x15 + x16 - 0.005*x116 - 0.005*x117 =E= 0;

e17..  - x16 + x17 - 0.005*x117 - 0.005*x118 =E= 0;

e18..  - x17 + x18 - 0.005*x118 - 0.005*x119 =E= 0;

e19..  - x18 + x19 - 0.005*x119 - 0.005*x120 =E= 0;

e20..  - x19 + x20 - 0.005*x120 - 0.005*x121 =E= 0;

e21..  - x20 + x21 - 0.005*x121 - 0.005*x122 =E= 0;

e22..  - x21 + x22 - 0.005*x122 - 0.005*x123 =E= 0;

e23..  - x22 + x23 - 0.005*x123 - 0.005*x124 =E= 0;

e24..  - x23 + x24 - 0.005*x124 - 0.005*x125 =E= 0;

e25..  - x24 + x25 - 0.005*x125 - 0.005*x126 =E= 0;

e26..  - x25 + x26 - 0.005*x126 - 0.005*x127 =E= 0;

e27..  - x26 + x27 - 0.005*x127 - 0.005*x128 =E= 0;

e28..  - x27 + x28 - 0.005*x128 - 0.005*x129 =E= 0;

e29..  - x28 + x29 - 0.005*x129 - 0.005*x130 =E= 0;

e30..  - x29 + x30 - 0.005*x130 - 0.005*x131 =E= 0;

e31..  - x30 + x31 - 0.005*x131 - 0.005*x132 =E= 0;

e32..  - x31 + x32 - 0.005*x132 - 0.005*x133 =E= 0;

e33..  - x32 + x33 - 0.005*x133 - 0.005*x134 =E= 0;

e34..  - x33 + x34 - 0.005*x134 - 0.005*x135 =E= 0;

e35..  - x34 + x35 - 0.005*x135 - 0.005*x136 =E= 0;

e36..  - x35 + x36 - 0.005*x136 - 0.005*x137 =E= 0;

e37..  - x36 + x37 - 0.005*x137 - 0.005*x138 =E= 0;

e38..  - x37 + x38 - 0.005*x138 - 0.005*x139 =E= 0;

e39..  - x38 + x39 - 0.005*x139 - 0.005*x140 =E= 0;

e40..  - x39 + x40 - 0.005*x140 - 0.005*x141 =E= 0;

e41..  - x40 + x41 - 0.005*x141 - 0.005*x142 =E= 0;

e42..  - x41 + x42 - 0.005*x142 - 0.005*x143 =E= 0;

e43..  - x42 + x43 - 0.005*x143 - 0.005*x144 =E= 0;

e44..  - x43 + x44 - 0.005*x144 - 0.005*x145 =E= 0;

e45..  - x44 + x45 - 0.005*x145 - 0.005*x146 =E= 0;

e46..  - x45 + x46 - 0.005*x146 - 0.005*x147 =E= 0;

e47..  - x46 + x47 - 0.005*x147 - 0.005*x148 =E= 0;

e48..  - x47 + x48 - 0.005*x148 - 0.005*x149 =E= 0;

e49..  - x48 + x49 - 0.005*x149 - 0.005*x150 =E= 0;

e50..  - x49 + x50 - 0.005*x150 - 0.005*x151 =E= 0;

e51..  - x50 + x51 - 0.005*x151 - 0.005*x152 =E= 0;

e52..  - x51 + x52 - 0.005*x152 - 0.005*x153 =E= 0;

e53..  - x52 + x53 - 0.005*x153 - 0.005*x154 =E= 0;

e54..  - x53 + x54 - 0.005*x154 - 0.005*x155 =E= 0;

e55..  - x54 + x55 - 0.005*x155 - 0.005*x156 =E= 0;

e56..  - x55 + x56 - 0.005*x156 - 0.005*x157 =E= 0;

e57..  - x56 + x57 - 0.005*x157 - 0.005*x158 =E= 0;

e58..  - x57 + x58 - 0.005*x158 - 0.005*x159 =E= 0;

e59..  - x58 + x59 - 0.005*x159 - 0.005*x160 =E= 0;

e60..  - x59 + x60 - 0.005*x160 - 0.005*x161 =E= 0;

e61..  - x60 + x61 - 0.005*x161 - 0.005*x162 =E= 0;

e62..  - x61 + x62 - 0.005*x162 - 0.005*x163 =E= 0;

e63..  - x62 + x63 - 0.005*x163 - 0.005*x164 =E= 0;

e64..  - x63 + x64 - 0.005*x164 - 0.005*x165 =E= 0;

e65..  - x64 + x65 - 0.005*x165 - 0.005*x166 =E= 0;

e66..  - x65 + x66 - 0.005*x166 - 0.005*x167 =E= 0;

e67..  - x66 + x67 - 0.005*x167 - 0.005*x168 =E= 0;

e68..  - x67 + x68 - 0.005*x168 - 0.005*x169 =E= 0;

e69..  - x68 + x69 - 0.005*x169 - 0.005*x170 =E= 0;

e70..  - x69 + x70 - 0.005*x170 - 0.005*x171 =E= 0;

e71..  - x70 + x71 - 0.005*x171 - 0.005*x172 =E= 0;

e72..  - x71 + x72 - 0.005*x172 - 0.005*x173 =E= 0;

e73..  - x72 + x73 - 0.005*x173 - 0.005*x174 =E= 0;

e74..  - x73 + x74 - 0.005*x174 - 0.005*x175 =E= 0;

e75..  - x74 + x75 - 0.005*x175 - 0.005*x176 =E= 0;

e76..  - x75 + x76 - 0.005*x176 - 0.005*x177 =E= 0;

e77..  - x76 + x77 - 0.005*x177 - 0.005*x178 =E= 0;

e78..  - x77 + x78 - 0.005*x178 - 0.005*x179 =E= 0;

e79..  - x78 + x79 - 0.005*x179 - 0.005*x180 =E= 0;

e80..  - x79 + x80 - 0.005*x180 - 0.005*x181 =E= 0;

e81..  - x80 + x81 - 0.005*x181 - 0.005*x182 =E= 0;

e82..  - x81 + x82 - 0.005*x182 - 0.005*x183 =E= 0;

e83..  - x82 + x83 - 0.005*x183 - 0.005*x184 =E= 0;

e84..  - x83 + x84 - 0.005*x184 - 0.005*x185 =E= 0;

e85..  - x84 + x85 - 0.005*x185 - 0.005*x186 =E= 0;

e86..  - x85 + x86 - 0.005*x186 - 0.005*x187 =E= 0;

e87..  - x86 + x87 - 0.005*x187 - 0.005*x188 =E= 0;

e88..  - x87 + x88 - 0.005*x188 - 0.005*x189 =E= 0;

e89..  - x88 + x89 - 0.005*x189 - 0.005*x190 =E= 0;

e90..  - x89 + x90 - 0.005*x190 - 0.005*x191 =E= 0;

e91..  - x90 + x91 - 0.005*x191 - 0.005*x192 =E= 0;

e92..  - x91 + x92 - 0.005*x192 - 0.005*x193 =E= 0;

e93..  - x92 + x93 - 0.005*x193 - 0.005*x194 =E= 0;

e94..  - x93 + x94 - 0.005*x194 - 0.005*x195 =E= 0;

e95..  - x94 + x95 - 0.005*x195 - 0.005*x196 =E= 0;

e96..  - x95 + x96 - 0.005*x196 - 0.005*x197 =E= 0;

e97..  - x96 + x97 - 0.005*x197 - 0.005*x198 =E= 0;

e98..  - x97 + x98 - 0.005*x198 - 0.005*x199 =E= 0;

e99..  - x98 + x99 - 0.005*x199 - 0.005*x200 =E= 0;

e100..  - x99 + x100 - 0.005*x200 - 0.005*x201 =E= 0;

e101..  - x100 + x101 - 0.005*x201 - 0.005*x202 =E= 0;

e102.. 0.005*(sqrt(1 + sqr(x102)) + sqrt(1 + sqr(x103)) + sqrt(1 + sqr(x103))
        + sqrt(1 + sqr(x104)) + sqrt(1 + sqr(x104)) + sqrt(1 + sqr(x105)) + 
       sqrt(1 + sqr(x105)) + sqrt(1 + sqr(x106)) + sqrt(1 + sqr(x106)) + sqrt(1
        + sqr(x107)) + sqrt(1 + sqr(x107)) + sqrt(1 + sqr(x108)) + sqrt(1 + 
       sqr(x108)) + sqrt(1 + sqr(x109)) + sqrt(1 + sqr(x109)) + sqrt(1 + sqr(
       x110)) + sqrt(1 + sqr(x110)) + sqrt(1 + sqr(x111)) + sqrt(1 + sqr(x111))
        + sqrt(1 + sqr(x112)) + sqrt(1 + sqr(x112)) + sqrt(1 + sqr(x113)) + 
       sqrt(1 + sqr(x113)) + sqrt(1 + sqr(x114)) + sqrt(1 + sqr(x114)) + sqrt(1
        + sqr(x115)) + sqrt(1 + sqr(x115)) + sqrt(1 + sqr(x116)) + sqrt(1 + 
       sqr(x116)) + sqrt(1 + sqr(x117)) + sqrt(1 + sqr(x117)) + sqrt(1 + sqr(
       x118)) + sqrt(1 + sqr(x118)) + sqrt(1 + sqr(x119)) + sqrt(1 + sqr(x119))
        + sqrt(1 + sqr(x120)) + sqrt(1 + sqr(x120)) + sqrt(1 + sqr(x121)) + 
       sqrt(1 + sqr(x121)) + sqrt(1 + sqr(x122)) + sqrt(1 + sqr(x122)) + sqrt(1
        + sqr(x123)) + sqrt(1 + sqr(x123)) + sqrt(1 + sqr(x124)) + sqrt(1 + 
       sqr(x124)) + sqrt(1 + sqr(x125)) + sqrt(1 + sqr(x125)) + sqrt(1 + sqr(
       x126)) + sqrt(1 + sqr(x126)) + sqrt(1 + sqr(x127)) + sqrt(1 + sqr(x127))
        + sqrt(1 + sqr(x128)) + sqrt(1 + sqr(x128)) + sqrt(1 + sqr(x129)) + 
       sqrt(1 + sqr(x129)) + sqrt(1 + sqr(x130)) + sqrt(1 + sqr(x130)) + sqrt(1
        + sqr(x131)) + sqrt(1 + sqr(x131)) + sqrt(1 + sqr(x132)) + sqrt(1 + 
       sqr(x132)) + sqrt(1 + sqr(x133)) + sqrt(1 + sqr(x133)) + sqrt(1 + sqr(
       x134)) + sqrt(1 + sqr(x134)) + sqrt(1 + sqr(x135)) + sqrt(1 + sqr(x135))
        + sqrt(1 + sqr(x136)) + sqrt(1 + sqr(x136)) + sqrt(1 + sqr(x137)) + 
       sqrt(1 + sqr(x137)) + sqrt(1 + sqr(x138)) + sqrt(1 + sqr(x138)) + sqrt(1
        + sqr(x139)) + sqrt(1 + sqr(x139)) + sqrt(1 + sqr(x140)) + sqrt(1 + 
       sqr(x140)) + sqrt(1 + sqr(x141)) + sqrt(1 + sqr(x141)) + sqrt(1 + sqr(
       x142)) + sqrt(1 + sqr(x142)) + sqrt(1 + sqr(x143)) + sqrt(1 + sqr(x143))
        + sqrt(1 + sqr(x144)) + sqrt(1 + sqr(x144)) + sqrt(1 + sqr(x145)) + 
       sqrt(1 + sqr(x145)) + sqrt(1 + sqr(x146)) + sqrt(1 + sqr(x146)) + sqrt(1
        + sqr(x147)) + sqrt(1 + sqr(x147)) + sqrt(1 + sqr(x148)) + sqrt(1 + 
       sqr(x148)) + sqrt(1 + sqr(x149)) + sqrt(1 + sqr(x149)) + sqrt(1 + sqr(
       x150)) + sqrt(1 + sqr(x150)) + sqrt(1 + sqr(x151)) + sqrt(1 + sqr(x151))
        + sqrt(1 + sqr(x152)) + sqrt(1 + sqr(x152)) + sqrt(1 + sqr(x153)) + 
       sqrt(1 + sqr(x153)) + sqrt(1 + sqr(x154)) + sqrt(1 + sqr(x154)) + sqrt(1
        + sqr(x155)) + sqrt(1 + sqr(x155)) + sqrt(1 + sqr(x156)) + sqrt(1 + 
       sqr(x156)) + sqrt(1 + sqr(x157)) + sqrt(1 + sqr(x157)) + sqrt(1 + sqr(
       x158)) + sqrt(1 + sqr(x158)) + sqrt(1 + sqr(x159)) + sqrt(1 + sqr(x159))
        + sqrt(1 + sqr(x160)) + sqrt(1 + sqr(x160)) + sqrt(1 + sqr(x161)) + 
       sqrt(1 + sqr(x161)) + sqrt(1 + sqr(x162)) + sqrt(1 + sqr(x162)) + sqrt(1
        + sqr(x163)) + sqrt(1 + sqr(x163)) + sqrt(1 + sqr(x164)) + sqrt(1 + 
       sqr(x164)) + sqrt(1 + sqr(x165)) + sqrt(1 + sqr(x165)) + sqrt(1 + sqr(
       x166)) + sqrt(1 + sqr(x166)) + sqrt(1 + sqr(x167)) + sqrt(1 + sqr(x167))
        + sqrt(1 + sqr(x168)) + sqrt(1 + sqr(x168)) + sqrt(1 + sqr(x169)) + 
       sqrt(1 + sqr(x169)) + sqrt(1 + sqr(x170)) + sqrt(1 + sqr(x170)) + sqrt(1
        + sqr(x171)) + sqrt(1 + sqr(x171)) + sqrt(1 + sqr(x172)) + sqrt(1 + 
       sqr(x172)) + sqrt(1 + sqr(x173)) + sqrt(1 + sqr(x173)) + sqrt(1 + sqr(
       x174)) + sqrt(1 + sqr(x174)) + sqrt(1 + sqr(x175)) + sqrt(1 + sqr(x175))
        + sqrt(1 + sqr(x176)) + sqrt(1 + sqr(x176)) + sqrt(1 + sqr(x177)) + 
       sqrt(1 + sqr(x177)) + sqrt(1 + sqr(x178)) + sqrt(1 + sqr(x178)) + sqrt(1
        + sqr(x179)) + sqrt(1 + sqr(x179)) + sqrt(1 + sqr(x180)) + sqrt(1 + 
       sqr(x180)) + sqrt(1 + sqr(x181)) + sqrt(1 + sqr(x181)) + sqrt(1 + sqr(
       x182)) + sqrt(1 + sqr(x182)) + sqrt(1 + sqr(x183)) + sqrt(1 + sqr(x183))
        + sqrt(1 + sqr(x184)) + sqrt(1 + sqr(x184)) + sqrt(1 + sqr(x185)) + 
       sqrt(1 + sqr(x185)) + sqrt(1 + sqr(x186)) + sqrt(1 + sqr(x186)) + sqrt(1
        + sqr(x187)) + sqrt(1 + sqr(x187)) + sqrt(1 + sqr(x188)) + sqrt(1 + 
       sqr(x188)) + sqrt(1 + sqr(x189)) + sqrt(1 + sqr(x189)) + sqrt(1 + sqr(
       x190)) + sqrt(1 + sqr(x190)) + sqrt(1 + sqr(x191)) + sqrt(1 + sqr(x191))
        + sqrt(1 + sqr(x192)) + sqrt(1 + sqr(x192)) + sqrt(1 + sqr(x193)) + 
       sqrt(1 + sqr(x193)) + sqrt(1 + sqr(x194)) + sqrt(1 + sqr(x194)) + sqrt(1
        + sqr(x195)) + sqrt(1 + sqr(x195)) + sqrt(1 + sqr(x196)) + sqrt(1 + 
       sqr(x196)) + sqrt(1 + sqr(x197)) + sqrt(1 + sqr(x197)) + sqrt(1 + sqr(
       x198)) + sqrt(1 + sqr(x198)) + sqrt(1 + sqr(x199)) + sqrt(1 + sqr(x199))
        + sqrt(1 + sqr(x200)) + sqrt(1 + sqr(x200)) + sqrt(1 + sqr(x201)) + 
       sqrt(1 + sqr(x201)) + sqrt(1 + sqr(x202))) =E= 4;

* set non-default bounds
x1.fx = 1;
x101.fx = 3;

* set non-default levels
x2.l = 0.9804;
x3.l = 0.9616;
x4.l = 0.9436;
x5.l = 0.9264;
x6.l = 0.91;
x7.l = 0.8944;
x8.l = 0.8796;
x9.l = 0.8656;
x10.l = 0.8524;
x11.l = 0.84;
x12.l = 0.8284;
x13.l = 0.8176;
x14.l = 0.8076;
x15.l = 0.7984;
x16.l = 0.79;
x17.l = 0.7824;
x18.l = 0.7756;
x19.l = 0.7696;
x20.l = 0.7644;
x21.l = 0.76;
x22.l = 0.7564;
x23.l = 0.7536;
x24.l = 0.7516;
x25.l = 0.7504;
x26.l = 0.75;
x27.l = 0.7504;
x28.l = 0.7516;
x29.l = 0.7536;
x30.l = 0.7564;
x31.l = 0.76;
x32.l = 0.7644;
x33.l = 0.7696;
x34.l = 0.7756;
x35.l = 0.7824;
x36.l = 0.79;
x37.l = 0.7984;
x38.l = 0.8076;
x39.l = 0.8176;
x40.l = 0.8284;
x41.l = 0.84;
x42.l = 0.8524;
x43.l = 0.8656;
x44.l = 0.8796;
x45.l = 0.8944;
x46.l = 0.91;
x47.l = 0.9264;
x48.l = 0.9436;
x49.l = 0.9616;
x50.l = 0.9804;
x51.l = 1;
x52.l = 1.0204;
x53.l = 1.0416;
x54.l = 1.0636;
x55.l = 1.0864;
x56.l = 1.11;
x57.l = 1.1344;
x58.l = 1.1596;
x59.l = 1.1856;
x60.l = 1.2124;
x61.l = 1.24;
x62.l = 1.2684;
x63.l = 1.2976;
x64.l = 1.3276;
x65.l = 1.3584;
x66.l = 1.39;
x67.l = 1.4224;
x68.l = 1.4556;
x69.l = 1.4896;
x70.l = 1.5244;
x71.l = 1.56;
x72.l = 1.5964;
x73.l = 1.6336;
x74.l = 1.6716;
x75.l = 1.7104;
x76.l = 1.75;
x77.l = 1.7904;
x78.l = 1.8316;
x79.l = 1.8736;
x80.l = 1.9164;
x81.l = 1.96;
x82.l = 2.0044;
x83.l = 2.0496;
x84.l = 2.0956;
x85.l = 2.1424;
x86.l = 2.19;
x87.l = 2.2384;
x88.l = 2.2876;
x89.l = 2.3376;
x90.l = 2.3884;
x91.l = 2.44;
x92.l = 2.4924;
x93.l = 2.5456;
x94.l = 2.5996;
x95.l = 2.6544;
x96.l = 2.71;
x97.l = 2.7664;
x98.l = 2.8236;
x99.l = 2.8816;
x100.l = 2.9404;
x102.l = -2;
x103.l = -1.92;
x104.l = -1.84;
x105.l = -1.76;
x106.l = -1.68;
x107.l = -1.6;
x108.l = -1.52;
x109.l = -1.44;
x110.l = -1.36;
x111.l = -1.28;
x112.l = -1.2;
x113.l = -1.12;
x114.l = -1.04;
x115.l = -0.96;
x116.l = -0.88;
x117.l = -0.8;
x118.l = -0.72;
x119.l = -0.64;
x120.l = -0.56;
x121.l = -0.48;
x122.l = -0.4;
x123.l = -0.32;
x124.l = -0.24;
x125.l = -0.16;
x126.l = -0.0800000000000001;
x128.l = 0.0800000000000001;
x129.l = 0.16;
x130.l = 0.24;
x131.l = 0.32;
x132.l = 0.4;
x133.l = 0.48;
x134.l = 0.56;
x135.l = 0.64;
x136.l = 0.72;
x137.l = 0.8;
x138.l = 0.88;
x139.l = 0.96;
x140.l = 1.04;
x141.l = 1.12;
x142.l = 1.2;
x143.l = 1.28;
x144.l = 1.36;
x145.l = 1.44;
x146.l = 1.52;
x147.l = 1.6;
x148.l = 1.68;
x149.l = 1.76;
x150.l = 1.84;
x151.l = 1.92;
x152.l = 2;
x153.l = 2.08;
x154.l = 2.16;
x155.l = 2.24;
x156.l = 2.32;
x157.l = 2.4;
x158.l = 2.48;
x159.l = 2.56;
x160.l = 2.64;
x161.l = 2.72;
x162.l = 2.8;
x163.l = 2.88;
x164.l = 2.96;
x165.l = 3.04;
x166.l = 3.12;
x167.l = 3.2;
x168.l = 3.28;
x169.l = 3.36;
x170.l = 3.44;
x171.l = 3.52;
x172.l = 3.6;
x173.l = 3.68;
x174.l = 3.76;
x175.l = 3.84;
x176.l = 3.92;
x177.l = 4;
x178.l = 4.08;
x179.l = 4.16;
x180.l = 4.24;
x181.l = 4.32;
x182.l = 4.4;
x183.l = 4.48;
x184.l = 4.56;
x185.l = 4.64;
x186.l = 4.72;
x187.l = 4.8;
x188.l = 4.88;
x189.l = 4.96;
x190.l = 5.04;
x191.l = 5.12;
x192.l = 5.2;
x193.l = 5.28;
x194.l = 5.36;
x195.l = 5.44;
x196.l = 5.52;
x197.l = 5.6;
x198.l = 5.68;
x199.l = 5.76;
x200.l = 5.84;
x201.l = 5.92;
x202.l = 6;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2018-05-28 Git hash: ac4a64c1
Imprint / Privacy Policy