MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance jit1
This just-in-time flowshop problem involves P products and S stages. Each stage contains identical equipment performing the same type of operation on different products. The objective is to minimize the total equipment related cost.
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 173983.32980000 (ANTIGONE) 173983.32980000 (BARON) 173983.32280000 (COUENNE) 173983.33000000 (LINDO) 173983.33000000 (SCIP) 173983.32700000 (SHOT) |
| Referencesⓘ | Gutierrez, R A and Sahinidis, N V, A branch-and-bound approach for machine selection in just-in-time manufacturing systems, International Journal of Production Research, 34:3, 1996, 797-818. Gunasekaran, A, Goyal, S K, Martikainen, T, and Yli-Olli, P, Equipment Selection Problems in just-in-time Manufacturing Systems, Journal of the Operational Research Society, 44, 1993, 345-353. |
| Sourceⓘ | case1 in GAMS Model Library model jit |
| Applicationⓘ | Design of Just-in-Time Flowshops |
| Added to libraryⓘ | 28 Feb 2014 |
| Problem typeⓘ | MINLP |
| #Variablesⓘ | 25 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 4 |
| #Nonlinear Variablesⓘ | 12 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | signomial |
| Objective curvatureⓘ | convex |
| #Nonzeros in Objectiveⓘ | 25 |
| #Nonlinear Nonzeros in Objectiveⓘ | 12 |
| #Constraintsⓘ | 32 |
| #Linear Constraintsⓘ | 32 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 86 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 12 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 12 |
| #Blocks in Hessian of Lagrangianⓘ | 12 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 2.2401e-04 |
| Maximal coefficientⓘ | 1.0000e+07 |
| Infeasibility of initial pointⓘ | 0.0004232 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 33 13 18 2 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 26 22 0 4 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 112 100 12 0
*
* Solve m using MINLP minimizing objvar;
Variables i1,i2,i3,i4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
,x20,x21,x22,x23,x24,x25,objvar;
Integer Variables i1,i2,i3,i4;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33;
e1.. -(7.5/x5 + 5.625/x6 + 11.25/x7 + 7.5/x8 + 8.57142857142857/x9 +
7.14285714285714/x10 + 2.85714285714286/x11 + 5.71428571428571/x12 +
8.88888888888889/x13 + 8.88888888888889/x14 + 8.88888888888889/x15 +
4.44444444444444/x16) - 5000*i1 - 5500*i2 - 4000*i3 - 6000*i4
- 6000000*x17 - 9000000*x18 - 6000000*x19 - 9000000*x20 - 8000000*x21
- 8000000*x22 - 8000000*x23 - 10000000*x24 - 8000000*x25 + objvar =E= 0;
e2.. - 0.000252525252525253*i1 + x5 =E= 0;
e3.. - 0.000508388408744281*i2 + x6 =E= 0;
e4.. - 0.000635162601626016*i3 + x7 =E= 0;
e5.. - 0.000636456211812627*i4 + x8 =E= 0;
e6.. - 0.000861450107681263*i1 + x9 =E= 0;
e7.. - 0.000438212094653812*i2 + x10 =E= 0;
e8.. - 0.000433776749566223*i3 + x11 =E= 0;
e9.. - 0.000289184499710815*i4 + x12 =E= 0;
e10.. - 0.000224466891133558*i1 + x13 =E= 0;
e11.. - 0.00033892560582952*i2 + x14 =E= 0;
e12.. - 0.000224014336917563*i3 + x15 =E= 0;
e13.. - 0.000337381916329285*i4 + x16 =E= 0;
e14.. 5000*i1 + 5500*i2 + 4000*i3 + 6000*i4 =L= 6000000;
e15.. 60*i1 + 50*i2 + 80*i3 + 40*i4 =L= 3000;
e16.. - x5 + x6 + x17 =G= 0;
e17.. - x6 + x7 + x18 =G= 0;
e18.. - x7 + x8 + x19 =G= 0;
e19.. - x9 + x10 + x20 =G= 0;
e20.. - x10 + x11 + x21 =G= 0;
e21.. - x11 + x12 + x22 =G= 0;
e22.. - x13 + x14 + x23 =G= 0;
e23.. - x14 + x15 + x24 =G= 0;
e24.. - x15 + x16 + x25 =G= 0;
e25.. x5 - x6 + x17 =G= 0;
e26.. x6 - x7 + x18 =G= 0;
e27.. x7 - x8 + x19 =G= 0;
e28.. x9 - x10 + x20 =G= 0;
e29.. x10 - x11 + x21 =G= 0;
e30.. x11 - x12 + x22 =G= 0;
e31.. x13 - x14 + x23 =G= 0;
e32.. x14 - x15 + x24 =G= 0;
e33.. x15 - x16 + x25 =G= 0;
* set non-default bounds
i1.lo = 1;
i2.lo = 1;
i3.lo = 1;
i4.lo = 1;
x5.lo = 0.000252525252525253;
x6.lo = 0.000508388408744281;
x7.lo = 0.000635162601626016;
x8.lo = 0.000636456211812627;
x9.lo = 0.000861450107681263;
x10.lo = 0.000438212094653812;
x11.lo = 0.000433776749566223;
x12.lo = 0.000289184499710815;
x13.lo = 0.000224466891133558;
x14.lo = 0.00033892560582952;
x15.lo = 0.000224014336917563;
x16.lo = 0.000337381916329285;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if gamsversion 242 option intvarup = 0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

